首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature and N energy dependence on nano-structural modifications and characteristics of Mo surface
Authors:H Savaloni  M Motmaen-Dadgar  MR Hantehzadeh
Institution:a Department of Physics, University of Tehran, North-Kargar St., Tehran, Iran
b Plasma Physics Research Center, Science and Research Campus of lslamic A. University, P.O. Box 14665-678, Tehran, Iran
Abstract:The surface modifications of Mo massive samples (0.5 mm foils) made by nitrogen ion implantation are studied by SEM, XRD, AFM, and SIMS. Nitrogen ions in the energy range of 16-30 keV with a fluence of 1 × 1018 N+ cm−2 were implanted in molybdenum samples for 1600 s at different temperatures. XRD patterns clearly showed MoN (0 3 1) (hcp) very close to Mo (2 0 0) line. Crystallite sizes (coherently diffracting domains) obtained from MoN (0 3 1) line, showed an increase with substrate temperature. AFM images showed the formation of grains on Mo samples, which grew in size with temperature. Similar morphological changes to that has been observed for thin films by increasing substrate temperature (i.e., structure zone model (SZM)), is obtained. The density of implanted nitrogen ions and the depth of nitrogen ion implantation in Mo studied by SIMS showed a minimum for N+ density as well as a minimum for penetration depth of N+ ions in Mo at certain temperatures, which are both consistent with XRD results (i.e., IMo (2 0 0)/IMo (2 1 1)) for Mo (bcc). Hence, showing a correlation between XRD and SIMS results. This phenomenon is explained on the basis of residual gas, substrate temperature, dissociation of water in the chamber and the ion energy.
Keywords:SEM  AFM  XRD  SIMS  Ion implantation  Depth profile  Molybdenum
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号