首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Retention and Thermodynamic Studies of Piperazine Diastereomers in Reversed-Phase Liquid Chromatography
Authors:N Wu  P M Yehl  D Gauthier  A Dovletoglou
Institution:(1) Department of Analytical Research, Merck Research Laboratories, Building RY818-B215, 2000, Rahway, NJ 07065, USA
Abstract:The effect of organic modifier concentration on retention and selectivity of two piperazine diastereomers in a typical n-octadecyl-bonded silica (ODS) column was investigated at pH 6.4 and pH 3.0 using phosphate-buffered acetonitrile (MeCN/H2O) and methanol (MeOH/H2O) mobile phases. The results show the logarithmic retention factors decrease with increasing organic concentration in a less rectilinear fashion in the MeCN/H2O system than in the MeOH/H2O system at high organic concentrations at both pHs. At pH 6.4, the MeOH/H2O system provided significantly higher diastereomer selectivity than the MeCN/H2O system, which can be ascribed to the hydrogen bonding interaction of methanol (as a hydrogen donor) with the piperazine amine moiety of the solute (as a hydrogen acceptor). At pH 3.0, both mobile phases provided high selectivity, in which both acetonitrile and methanol acted as hydrogen acceptors, while the protonated amine acted as the hydrogen donor. The effect of temperature on retention and selectivity was also studied in the two mobile phase systems at both pHs. It was found that at pH 6.4 the retention and selectivity were enthalpically driven in the MeOH/H2O system, while entropically driven in the MeCN/H2O system. However, the retention was entropically driven and the selectivity enthalpically driven in both systems at pH 3.0. Locally preferential solvating and hydrogen bonding effects are proposed to explain the ldquoanomalousrdquo retention and selectivity behaviors.
Keywords:Column liquid chromatography Thermodynamics of diastereomer separation Piperazine isomers
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号