首页 | 本学科首页   官方微博 | 高级检索  
     


Electronic structure of epitaxial interfaces
Authors:G P Das
Affiliation:(1) Solid State Physics Division, Bhabha Atomic Research Centre, 400 085 Bombay, India
Abstract:Metal-semiconductor (Schottky barrier) and semiconductor-semiconductor (heterojunction) interfaces show rectifying barrier heights and band offsets, which are two key quantities required to optimize the performance of a device. A large number of models and empirical theories have been put forward by various workers in the field during the last 50 years. But a proper understanding of the microscopic origin of these quantities is still missing. In this article, our focus is mainly to present a unified framework for first principles investigation of the electronic structure of epitaxial interfaces, in which one of the constituents is a semiconductor. LMTO method is now a well established tool for self-consistent electronic structure calculations of solids within LDA. Such calculations, when performed on supercell geometries, are quite successful in predicting a wide range of interface specific electronic properties accurately and efficiently. We describe here the basic formalism of this LMTO-supercell approach in its various levels of sophistication and apply it to investigate the electronic structure of A- and B-type NiSi2/Si(111) interface as a prototype metal-semiconductor system, and CaF2/Si(111) interface as a prototype insulator-semiconductor system. These are a few of the most ideal lattice matched epitaxial interfaces whose atomic and electronic structures have been extensively studied using a wide range of experimental probes. We give here a glimpse of these experimental results and discuss the success as well as limitations of LDA calculations to achieve accuracies useful for the device physicists.
Keywords:Epitaxial interfaces  Schottky barrier  LMTO method  supercell approach  electronic structure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号