首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Highly sensitive deoxynivalenol immunosensor based on a glassy carbon electrode modified with a fullerene/ferrocene/ionic liquid composite
Authors:Wei Zhilei  Sun Xiulan  Li Zaijun  Fang Yinjun  Ren Guoxiao  Huang Yaru  Liu Junkang
Institution:1. School of Chemical and Materials Engineering, Jiangnan University, Wuxi, 214122, China
2. State Key Laboratory of Food Science and Technology, Wuxi, 214122, China
3. Zhejiang Zanyu Technology Limited Corporation, Hangzhou, 311215, China
Abstract:We describe a sensitive electrochemical immunosensor for the detection of deoxynivalenol (DON). It is based on a glassy carbon electrode modified with a composite made from fullerene (C60), ferrocene and the ionic liquid. The components were immobilized on the surface of the electrode using chitosan cross-linked with epichlorohydrin. Then, the antibody to DON was covalently conjugated to the surface which then was blocked with serum albumin. The performance of the immunosensor was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It offers good repeatability (RSD?=?1.2%), selectivity, a stability of more than 180?days, an impedimetric response to DON in the range of 1?pgmL?1 to 0.3?ng?mL?1, and a detection limit (at S/N?=?3) of 0.3?pgmL?1. The limit of detection is better than that of GC, HPLC, GC-MS, HPLC-MS and LC-MS-MS. The effects of omitting C60 or the ionic liquid were also examined. The results indicate that the sensitivity of the biosensor is 2-fold better if C60 and ionic liquids are used. This demonstrates that C60 facilitates electron transfer on the surface of the modified electrode due to its unique electrochemical properties, while the ionic liquid provides a biocompatible microenvironment for the antibody. This results in increased sensitivity and stability. The method was satisfactorily applied to the determination of DON in food samples.
Figure
Fullerene, ferrocene, chitosan and ionic liquid offer remarkable synergistic contributions towards improve electrochemical performance of DON sensor. This results that novel sensor exhibits a good repeatability (RSD=1.2%), selectivity, very low detection limit (S/N=3) of 0.0003 ng mL-1, an impedimetric response to DON in the range from 0.001 ng mL-1 to 0.3 ng mL-1 and a stability of more than 180 days. Cyclic voltammograms of, Ab/C60-FC-IL-GCE a and Ab/FC-IL-GCE b
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号