首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The role of hydrogen bonding in the selectivity of L-cysteine methyl ester (CYSM) and L-cysteine ethyl ester (CYSE) for chloride ion
Authors:Mosier-Boss P A  Lieberman S H
Institution:SPAWAR Systems Center San Diego, Code 237, San Diego, CA 92152, USA. pam.boss@navy.mil
Abstract:The interaction of cysteamine (CY), L-cysteine methyl ester (CYSM), and L-cysteine ethyl ester (CYSE) with nitrate, sulfate, perchlorate, dihydrogen phosphate, and chloride ions was investigated using surface enhanced Raman spectroscopy (SERS). CYSM and CYSE are chemical derivatives of CY. These thiols have a quaternary ammonium group to attract the anions to the SERS surface. Dihydrogen phosphate did not interact with these cationic thiols. The CY interaction with perchlorate, nitrate, and sulfate is stronger than the interaction with chloride. However, replacing a hydrogen on the carbon adjacent to the quaternary ammonium group with either a methyl or ethyl ester group results in stronger complexation with chloride ion than with either sulfate or nitrate ion. In the case of CYSM, the chloride interaction is five times stronger than the interaction with perchlorate. Molecular modeling indicates that the high selectivity of CYSM/CYSE for chloride is due to hydrogen bonding between the chloride ion and the hydrogen of the CH3 moeities of adjacent ester groups.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号