首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The crystallinity and miscibility of syndiotactic polystyrene blends after mixing with low molar mass liquid crystal or commercial lubricant
Authors:Pichet Pahupongsab  Supakanok Thongyai  Sirirat Wacharawichanant  Piyasan Prasertdham
Institution:(1) Institute of Polymer Science, Chemistry College, Xiangtan University, Xiangtan, 411105, Hunan Province, People’s Republic of China;(2) Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, People’s Republic of China;
Abstract:The quantities of the crystallinity of syndiotactic polystyrene (SPS) blended with another polymer in the group of poly(α-methyl styrene), poly(n-butyl methacrylate) or poly(cyclohexyl acrylate) with or without the additives were measured by X-ray diffraction and calculated by Ruland’s method. The SPS was synthesized by using metallocene catalyst and modified-methylaluminoxane as cocatalyst. The additive of low molar mass liquid crystal chemical (cyclohexyl-biphenyl-cyclohexane (CBC33)) or lubricant (glycerol monostearate (GMS)) was individually added to the blends of SPS in order to investigate the effects on the crystallinity of the blended SPS. From the experimental results, it was found that the percent crystallinities of the blends decreased with decreasing the percent of SPS in the blend because of the dilution of SPS. The depression of the percent crystallinity was in the order of PaMS > PCHA > PBMA according to the compatibility with SPS. The addition of GMS or CBC33 slightly decreased the percent crystallinity of the pure SPS. The addition of GMS impeded the depression of the SPS crystallinity in the blends, because their percent depression from pure SPS is similar (at around 25%) regardless to the components of the blends. The blends with added CBC33 have the similar depression of crystallinity as the pure blends because of the low concentration of CBC33 and the good compatibility of CBC33 with the SPS.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号