首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进区间数密度集结算子指标群赋权方法
引用本文:贺芳. 基于改进区间数密度集结算子指标群赋权方法[J]. 运筹与管理, 2013, 22(4): 133-138
作者姓名:贺芳
作者单位:天津大学 理学院,天津 300072
摘    要:针对指标数据已知,而权重数据未知的群组赋权问题,给出了一种基于改进的区间数密度集结算子来进行指标群组赋权的决策方法。首先给出了区间数和区间数密度集结算子(IDM)的定义及性质,改进了以前区间数聚类的方法,应用直接法对一维区间数据组进行聚类,并定义了模糊统计量,以确定最为合理的一种聚类方式。然后基于改进的区间数密度集结算子这种数学模型,来解决指标值数据已知,而权重未知的群组赋权问题。最后举例说明该方法的可行性和实用性。

关 键 词:群决策  区间数  改进的区间数密度集结算子  模糊聚类  群组权重  
收稿时间:2011-10-22

Research on Obtaining the Weights of Index Group Based on Modified Interval Number Density Aggregation Operator
HE Fang. Research on Obtaining the Weights of Index Group Based on Modified Interval Number Density Aggregation Operator[J]. Operations Research and Management Science, 2013, 22(4): 133-138
Authors:HE Fang
Affiliation:School of Science, Tianjin University, Tianjin 300072, China
Abstract:A decision-making method with a modified interval number density aggregation operator is proposed to solve the group weights problems with index data known and weights unknown. First, the several concepts of interval number and interval number density aggregation operator are introduced, the method of interval number clustering is improved, the direct algorithm is applied to cluster the one-dimensional data, and fuzzy statistics variables are defined to make sure which is the best way to clustering. Then based on a modified interval number density aggregation operator the group weights problems with index data known and weights unknown are solved. Finally it is shown that the method is feasible and effective with an example.
Keywords:group decision-making  interval number  modified interval number density aggregation operator  fuzzy clustering  group weight  
点击此处可从《运筹与管理》浏览原始摘要信息
点击此处可从《运筹与管理》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号