首页 | 本学科首页   官方微博 | 高级检索  
     

Effective Hamiltonian of the Jaynes–Cummings model beyond rotating-wave approximation
作者单位:Department of Physics, Capital Normal University, Beijing 100048, China
基金项目:Project supported by the National Natural Science Foundation of China (Grant No. 11875195) and the Foundation of Beijing Education Committees, China (Grant Nos. CIT&TCD201804074 and KZ201810028043).
摘    要:The Jaynes–Cummings model with or without rotating-wave approximation plays a major role to study the interaction between atom and light. We investigate the Jaynes–Cummings model beyond the rotating-wave approximation. Treating the counter-rotating terms as periodic drivings, we solve the model in the extended Floquet space. It is found that the full energy spectrum folded in the quasi-energy bands can be described by an effective Hamiltonian derived in the highfrequency regime. In contrast to the Z_2 symmetry of the original model, the effective Hamiltonian bears an enlarged U(1)symmetry with a unique photon-dependent atom-light detuning and coupling strength. We further analyze the energy spectrum, eigenstate fidelity and mean photon number of the resultant polaritons, which are shown to be in accordance with the numerical simulations in the extended Floquet space up to an ultra-strong coupling regime and are not altered significantly for a finite atom-light detuning. Our results suggest that the effective model provides a good starting point to investigate the rich physics brought by counter-rotating terms in the frame of Floquet theory.

收稿时间:2020-11-17

Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Affiliation:Department of Physics, Capital Normal University, Beijing 100048, China
Abstract:The Jaynes-Cummings model with or without rotating-wave approximation plays a major role to study the interaction between atom and light. We investigate the Jaynes-Cummings model beyond the rotating-wave approximation. Treating the counter-rotating terms as periodic drivings, we solve the model in the extended Floquet space. It is found that the full energy spectrum folded in the quasi-energy bands can be described by an effective Hamiltonian derived in the high-frequency regime. In contrast to the Z2 symmetry of the original model, the effective Hamiltonian bears an enlarged U(1) symmetry with a unique photon-dependent atom-light detuning and coupling strength. We further analyze the energy spectrum, eigenstate fidelity and mean photon number of the resultant polaritons, which are shown to be in accordance with the numerical simulations in the extended Floquet space up to an ultra-strong coupling regime and are not altered significantly for a finite atom-light detuning. Our results suggest that the effective model provides a good starting point to investigate the rich physics brought by counter-rotating terms in the frame of Floquet theory.
Keywords:Jaynes-Cummings model  Floquet theory  high-frequency approximation  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号