首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental analysis of interface contact behavior using a novel image processing method
Institution:State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Abstract:The spatial and temporal evolution of real contact area of contact interface with loads is a challenge. It is generally believed that there is a positive linear correlation between real contact area and normal load. However, with the development of measuring instruments and methods, some scholars have found that the growth rate of real contact area will slow down with the increase of normal load under certain conditions, such as large-scale interface contact with small roughness surface,which is called the nonlinear phenomenon of real contact area. At present, there is no unified conclusion on the explanation of this phenomenon. We set up an experimental apparatus based on the total reflection principle to verify this phenomenon and analyze its mechanism. An image processing method is proposed, which can be used to quantitative analysis micro contact behaviors on macro contact phenomenon. The weighted superposition method is used to identify micro contact spots, to calculate the real contact area, and the color superimposed image is used to identify micro contact behaviors.Based on this method, the spatiotemporal evolution mechanism of real contact area nonlinear phenomena is quantitatively analyzed. Furthermore, the influence of nonlinear phenomenon of real contact area on the whole loading and unloading process is analyzed experimentally. It is found that the effects of fluid between contact interface, normal load amplitude and initial contact state on contact behavior cannot be ignored in large-scale interface contact with small roughness surface.
Keywords:real contact area  total reflection method  micro-contact spots  interface contact  experimental analysis  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号