首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First-principles study of plasmons in doped graphene nanostructures
Institution:1.College of Mathematics and Physics, Leshan Normal College, Leshan 614000, China;2.College of Physics, Sichuan University, Chengdu 610065, China;3.School of Science, Xihua University, Chengdu 610065, China
Abstract:The operating frequencies of surface plasmons in pristine graphene lie in the terahertz and infrared spectral range,which limits their utilization. Here, the high-frequency plasmons in doped graphene nanostructures are studied by the timedependent density functional theory. The doping atoms include boron, nitrogen, aluminum, silicon, phosphorus, and sulfur atoms. The influences of the position and concentration of nitrogen dopants on the collective stimulation are investigated,and the effects of different types of doping atoms on the plasmonic stimulation are discussed. For different positions of nitrogen dopants, it is found that a higher degree of symmetry destruction is correlated with weaker optical absorption. In contrast, a higher concentration of nitrogen dopants is not correlated with a stronger absorption. Regarding different doping atoms, atoms similar to carbon atom in size, such as boron atom and nitrogen atom, result in less spectral attenuation. In systems with other doping atoms, the absorption is significantly weakened compared with the absorption of the pristine graphene nanostructure. Plasmon energy resonance dots of doped graphene lie in the visible and ultraviolet spectral range.The doped graphene nanostructure presents a promising material for nanoscaled plasmonic devices with effective absorption in the visible and ultraviolet range.
Keywords:doped graphene  absorption spectroscopy  time-dependent density functional theory  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号