首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strain-tunable electronic and optical properties of h-BN/BC_3 heterostructure with enhanced electron mobility
Institution:1.School of Physics, Henan Normal University, Xinxiang 453007, China;2.School of Science, Henan Institute of Technology, Xinxiang 453003, China
Abstract:By using first-principles calculation, we study the properties of h-BN/BC_3 heterostructure and the effects of external electric fields and strains on its electronic and optical properties. It is found that the semiconducting h-BN/BC_3 has good dynamical stability and ultrahigh stiffness, enhanced electron mobility, and well-preserved electronic band structure as the BC_3 monolayer. Meanwhile, its electronic band structure is slightly modified by an external electric field. In contrast,applying an external strain can mildly modulate the electronic band structure of h-BN/BC_3 and the optical property exhibits an apparent redshift under a compressive strain relative to the pristine one. These findings show that the h-BN/BC_3 hybrid can be designed as optoelectronic device with moderately strain-tunable electronic and optical properties.
Keywords:heterostructure  electronic and optical properties  first-principles calculation  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号