首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of external electric field on crystalline structure and dielectric properties of Bi_(1.5)MgNb_(1.5)O_7 thin films
Institution:State Key Laboratory of Electronic Thin Films and Integrated Devices;School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract:Bismuth-based cubic pyrochlore materials have attractive dielectric properties, especially dielectric tunability. The Bi1.5MgNb1.5O7 ceramic samples were prepared by solid state reaction. The XRD results and SEM pictures prove the raw material are well mixed and co-fired and the BMN cubic pyrochlore is well crystallized, no second phase was found in the result. BMN thin film were fabricated by depositing BMN ceramic nanoparticles on the sapphire. The BMN thin film has a high dielectric tunability of 43% at a bias voltage of 1.5 MV/cm, with loss tangent lower than 0.009. A Raman study of BMN cubic pyrochlore reveals O'-A-O' and O-A-O bending modes contribute to 80% of dielectric permittivity, obstructing these modes such as applying external electric field can have apparent influence on dielectric constant. Berry Phase calculation results shows that A2O' tetrahedrons are more easy to distort under an external field. The A-site Mg have the highest displacement (0.765028 Å), followed by A-site Bi cations (0.346317 Å). Compared to zero-bias thin film, the biased one with A-O and A-O' bonds being stretched and external coulomb force applied on cations and anions, the dielectric constant under bias field dramatically decreased.
Keywords:cubic pyrochlore  dielectric properties  tunability  DFT calculations  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号