首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Institution:1.Institute of Applied Physical and Computational Mathematics, Beijing 100094, China;2.Center for Applied Physics and Technology, Peking University, Beijing 100871, China;3.Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
Abstract:Multiple steady solutions and hysteresis phenomenon in the square cavity flows driven by the surface with antisymmetric velocity profile are investigated by numerical simulation and bifurcation analysis. A high order spectral element method with the matrix-free pseudo-arclength technique is used for the steady-state solution and numerical continuation. The complex flow patterns beyond the symmetry-breaking at Re≈320 are presented by a bifurcation diagram for Re<2500. The results of stable symmetric and asymmetric solutions are consistent with those reported in literature, and a new unstable asymmetric branch is obtained besides the stable branches. A novel hysteresis phenomenon is observed in the range of 2208 < Re < 2262, where two pairs of stable and two pairs of unstable asymmetric steady solutions beyond the stable symmetric state coexist. The vortices near the sidewall appear when the Reynolds number increases, which correspond to the bifurcation of topology structure, but not the bifurcation of Navier-Stokes equations. The hysteresis is proposed to be the result of the combined mechanisms of the competition and coalescence of secondary vortices.
Keywords:bifurcation and continuation  symmetry-breaking  hysteresis  surface driven cavity flow  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号