首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nucleotides. Part XLIV. Synthesis,characterization, and biological activity of monomeric and trimeric cordycepin-cholesterol conjugates and inhibition of HIV-1 replication
Authors:Marita Wasner  Wolfgang Pfleiderer  Earl E Henderson  Robert J Suhadolnik
Abstract:The antivirally active 3′-deoxyadenylyl-(2′–5′)-3′-deoxyadenylyl-(2′–5′)-3′-deoxyadenosine (cordycepin trimer core) was modified at the 2′- or 5′-terminus, by attachment of cholesterol via a carbonate bond (→ 15 ) or a succinate linker (→ 16 and 27 ) to improve cell permeability. The corresponding monomeric conjugates 4 , 7 , and 21 of cordycepin were prepared as model substances to study the applicability of the anticipated protecting groups – the monomethoxytrityl (MeOTr), the (tert-butyl)dimethylsilyl (tbds), and the β -eliminating 2-(4-nitrophenyl)ethyl (npe) and 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) groups – for the final deblocking steps without harming the ester bonds of the conjugate trimers. The syntheses were performed in solution using phosphoramidite chemistry. The fully protected trimer conjugates 13 , 14 , and 26 as well as all intermediates were characterized by elemental analyses, UV and 1H-NMR spectra. The deblocked conjugates 15 , 16 , and 27 were pure according to HPLC and showed the correct compositions by mass spectra. Comparative biological studies indicated that cordycepincholesterol conjugate trimers 16 and 27 were 333- and 1000-fold, respectively, more potent inhibitors of HIV-1-induced syncytia formation than cordycepin trimer core.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号