首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of ammonia carrier gas on the response of the flame ionization detector
Authors:Mohamed Abdel-Rehim  Lin Zhang  Moustapha Hassan
Abstract:The effect of using ammonia as a carrier gas on the response of the flame ionization detector (FID) has been investigated. It was found that the FID response, calculated as the effective carbon number (ECN), increased for all the compounds studied when ammonia, rather than helium, was used. The change was 0–0. 9 carbon atom for hydrocarbons, one carbon atom for alcohols and diphenyl ether, and 0.4–1 carbon atom for phenols and ketones. The increase in ECN was larger for amines (0. 8–5 carbon atoms), but these numbers also reflected an improvement in chromatographic performance as a result of reduced adsorption on the column. The largest change in signal-to-noise ratio, a six-fold increase, was obtained for octyl-amine; ratios for hexyl methyl ketone, diisobutyl ketone, dihexyl-amine, dibutylamine, and N-methyloctylamine increased by a factor of 2–3 when ammonia was used as carrier gas. To determine the extent to which the effect on detector response was solely attributable to ammonia, a mixture of 5 % ammonia in nitrogen was used as detector make-up gas with helium as carrier gas. Under these conditions the noise in the FID increased but for most of the compounds studied the signal-to-noise ratio also increased.
Keywords:Carrier gas  Ammonia  Helium  Hydrocarbons  Amines  Ketones  Alcohols  Phenols
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号