首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism and control of molecular energy flow: a modeling perspective
Authors:Martin Gruebele
Affiliation:(1) Departments of Chemistry and Physics, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, US
Abstract: Vibrational energy flow in organic molecules occurs by a multiple-time-scale mechanism that can be modeled by a single exponential only in its initial stages. The mechanism is a consequence of the hierarchical structure of the vibrational Hamiltonian, which leads to diffusion of vibrational wavepackets on a manifold with far fewer than the 3N−6 dimensions of the full vibrational state space. The dynamics are controlled by a local density of states, which does not keep increasing with molecular size. In addition, the number of vibrational coordinates severely perturbed during chemical reaction is small, leading to preservation of the hierarchical structure at chemically interesting energies. This regularity opens up the possibility of controlling chemical reactions by controlling the vibrational energy flow. Computationally, laser control of intramolecular vibrational energy redistribution can be modeled by quantum-classical, or by purely quantum-mechanical models of the molecule and control field. Received: 26 July 2002 / Accepted: 30 September 2002 / Published online: 2 December 2002 Electronic Supplementary Material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00214-002-0394-2. Acknowledgements. This work was supported by NSF grant CHE 9986670. Correspondence to: M. Gruebele e-mail: gruebele@scs.uiuc.edu
Keywords::   Power law –   Coherent control –   Symplectic propagator –   Quantum diffusion –   State space
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号