首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Discovery of halopyridines as quiescent affinity labels: inactivation of dimethylarginine dimethylaminohydrolase
Authors:Johnson Corey M  Linsky Thomas W  Yoon Dae-Wi  Person Maria D  Fast Walter
Institution:Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States.
Abstract:In an effort to develop novel covalent modifiers of dimethylarginine dimethylaminohydrolase (DDAH) that are useful for biological applications, a set of "fragment"-sized inhibitors that were identified using a high-throughput screen are tested for time-dependent inhibition. One structural class of inactivators, 4-halopyridines, show time- and concentration-dependent inactivation of DDAH, and the inactivation mechanism of one example, 4-bromo-2-methylpyridine (1), is characterized in detail. The neutral form of halopyridines is not very reactive with excess glutathione. However, 1 readily reacts, with loss of its halide, in a selective, covalent, and irreversible manner with the active-site Cys249 of DDAH. This active-site Cys is not particularly reactive (pK(a) ca. 8.8), and 1 does not inactivate papain (Cys pK(a) ca. ≤4), suggesting that, unlike many reagents, Cys nucleophilicity is not a predominating factor in selectivity. Rather, binding and stabilization of the more reactive pyridinium form of the inactivator by a second moiety, Asp66, is required for facile reaction. This constraint imparts a unique selectivity profile to these inactivators. To our knowledge, halopyridines have not previously been reported as protein modifiers, and therefore they represent a first-in-class example of a novel type of quiescent affinity label.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号