首页 | 本学科首页   官方微博 | 高级检索  
     

镍掺杂SnO2纳米微球锂离子电池负极材料的制备及其性能
引用本文:苗纯杰,胡志翔,任兰兰,郜子明,董敬余,李琦,罗志刚,陈志文. 镍掺杂SnO2纳米微球锂离子电池负极材料的制备及其性能[J]. 上海大学学报(自然科学版), 2016, 22(2): 239-244. DOI: 10.3969/j.issn.1007-2861.2015.05.020
作者姓名:苗纯杰  胡志翔  任兰兰  郜子明  董敬余  李琦  罗志刚  陈志文
作者单位:上海大学环境与化学工程学院, 上海 200444
基金项目:国家自然科学基金资助项目(11375111, 11428410);教育部博士点基金资助项目(20133108110021)
摘    要:利用简单的一步水热法制备高性能的镍掺杂SnO2 纳米微球锂离子电池负极材料. 利用扫描电镜(scanning electron microscope, SEM)、高分辨率透射电镜(high resolution transmission electron microscope, HRTEM)、拉曼分析仪、X射线衍射(X-ray diffraction, XRD)仪以及电化学性能测试仪器(如蓝电测试系统、电化学工作站)分别研究了镍掺杂对SnO2 微观形貌、组成、结晶行为及电化学性能的影响, 并得到了最佳反应时间. 实验结果表明:与纯SnO2相比, 镍掺杂SnO2 纳米微球表现出了更好的倍率性能和优异的循环性能. 特别地, 反应时间为12 h 的5 % 镍掺杂SnO2 在100 mA/g 电流密度下的首次放电比容量为1 970.3 mA·h/g,远高于SnO2 的理论容量782 mA·h/g. 这是因为镍掺杂可适应庞大的体积膨胀, 避免了纳米粒子的团聚, 因此其电化学性能得到了显著改善.

关 键 词:负极材料   锂离子电池   镍掺杂SnO2   
收稿时间:2016-01-15

Preparation and properties of Ni-doped SnO2 nanospheres for lithium-ion battery anode materials
MIAO Chunjie,HU Zhixiang,REN Lanlan,GAO Ziming,DONG Jingyu,LI Qi,LUO Zhigang,CHEN Zhiwen. Preparation and properties of Ni-doped SnO2 nanospheres for lithium-ion battery anode materials[J]. Journal of Shanghai University(Natural Science), 2016, 22(2): 239-244. DOI: 10.3969/j.issn.1007-2861.2015.05.020
Authors:MIAO Chunjie  HU Zhixiang  REN Lanlan  GAO Ziming  DONG Jingyu  LI Qi  LUO Zhigang  CHEN Zhiwen
Affiliation:School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Abstract:Ni-doped SnO2 nanospheres were synthesized with a facile one-step hydrothermal method as a high-performance anode material for lithium-ion batteries. Scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), Raman analyzer, X-ray diffraction (XRD) and electrochemical performance testing equipment such as blue electrical test systems and electrochemical workstation were used to investigate morphology, composition, crystallization behavior and electrochemical properties of Ni-doped SnO2 and find the best doping reaction time. It has been found that the appropriate Ni-doped SnO2 nanospheres showed much better rate capability and excellent cycling performance compared with the pristine SnO2. In particular, the sample of 5%  Ni-doped SnO2 whose reaction time was 12 h showed a high initial discharge capacity of 1 970.3 mA·h/g at a current density of 100 mA/g, far higher than the theoretical capacity of SnO2 of 782 mA·h/g. This was because Ni-doping could accommodate huge volume expansion and avoid agglomeration of nanoparticles. Thus, the electrochemical performance of Ni-doped SnO2 nanospheres was significantly improved.
Keywords: anode material   lithium-ion battery   Ni-doped SnO  
本文献已被 CNKI 等数据库收录!
点击此处可从《上海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号