Hydrogen-bonding effects in calix |
| |
Authors: | Cho Rudkevich Shivanyuk Rissanen Rebek |
| |
Affiliation: | The Skaggs Institute for Chemical Biology and The Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA. |
| |
Abstract: | The synthesis and spectroscopic characterization of self-assembling calix[4]arene based capsules 1a.1a and 1b.1b are described. These compounds feature four urea substituents at the upper rims and four secondary amide fragments at the lower rims that can participate in inter- and intramolecular hydrogen bonding in apolar solution. Communication between the calixarene rims in 1a, b influences the self-assembled cavity's size and shape. Specifically. dimerization results in a perfect cone conformation of the calixarene skeleton in 1a, b and stabilizes a seam of intramolecular amide C=O...H-N hydrogen bonds at the lower rim. This seam is cycloenantiomeric, with either clockwise or counterclockwise arrangements of the head-to-tail amides. Complexation of Na+-cation breaks hydrogen bonds at the lower rim but maintains the capsular assembly. Encapsulation properties of 1a.1a and 1b.1b were studied in nonpolar solvents and their binary mixtures as well as through heterodimerization experiments. The presence of amide groups at the lower rim causes notable differences in the capsule's binding affinities when compared to the corresponding tetraester capsules 1c.1c and 1d.1d. In the monomeric state calixarenes 1a, b are in a pinched cone conformation. The solid state X-ray crystallographic studies with monomeric 1a reveal only two intramolecular C=O...H-N hydrogen bonds between the adjacent amides at the lower rim, and an extensive network of intermolecular hydrogen bonds between urea groups at the upper rim. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|