Abstract: | Recent gravimetric studies of the sorption of organic vapors by poly(vinyl chloride) and polystyrene powders have demonstrated several features which promise to be generally useful in studying the structure and properties of the glassy state. The uptake of vapor can be significantly altered by prior thermal or vapor treatment of the polymer, apparently reflecting changes in the microvoid content or free volume of the polymer. Fickian sorption in sufficiently fine powders proceeds to equilibrium in a few minutes. Upon exposure of a polymer powder to an appreciable pressure of vapor, both a rapid Fickian sorption and a slower, relaxation-controlled sorption are observed. Superposition of these processes leads to widely varied sorption kinetics; a model comprising Fickian diffusion and first-order relaxation terms accurately describes the data and allows estimation of equilibrium and rate constants for both processes. After prolonged exposure, removal of a swelling vapor induces a slow reconsolidation of the polymer structure; this deswelling relaxation can be monitored by the decreasing amounts of vapor sorbed in repeated brief exposures to low vapor pressures, and can also be described by a first-order relaxation model. In this regard, the penetrant vapor serves as a molecular probe, monitoring glassy-state relaxation occurring in the absence of penetrant. The same, presumably true equilibrium is ultimately reached both by swelling from a low free-volume state and by consolidation from a preswollen state of high free volume. The rates of both swelling and consolidation relaxations appear to be retarded by the presence of low concentrations of vapor in the polymer, suggesting that vapor molecules may preempt some of the free volume required for relaxation. |