首页 | 本学科首页   官方微博 | 高级检索  
     检索      


(Fe(III)(OH(2))(2))(3)(A-alpha-PW(9)O(34))(2)](9-) on cationic silica nanoparticles,a new type of material and efficient heterogeneous catalyst for aerobic oxidations
Authors:Okun Nelya M  Anderson Travis M  Hill Craig L
Institution:Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
Abstract:Polyoxometalates (POMs) electrostatically bind to silica nanoparticles coated with cationic aluminum oxide "(Si/AlO2)n+" to form a new type of material (the anionic POMs replace Cl- counterions associated with the cationic surface sites). Association of a new approximately D3h POM of formula (FeIII(OH2)2)3(A-alpha-PW9O34)2]9- (1) with the cationic nanoparticles (to form "K81/(Si/AlO2)") was studied in detail. Elemental analysis, particle sizes from both laser light scattering and TEM before and after association of 1, the size of 1 from X-ray crystallography, and other methods provide mutually consistent data that indicate about 58 K8(FeIII(OH2)2)3(A-alpha-PW9O34)2]- monoanions associate with the average nanoparticle (diameter of the K81/(Si/AlO2) product = approximately 17 nm). While heterogeneity of the cationic sites and roughness of the (Si/AlO2)n+ surfaces make the associated POMs structurally nonuniform, the equivalent of approximately 1 monolayer of 1 is present in K81/(Si/AlO2). Remarkably, while 1, the precursor (Si/AlO2)n+, and the components of 1, each alone, are inactive as catalysts for O2/air-based oxidation of sulfides or aldehydes in solution, K81/(Si/AlO2) is an active catalyst for both reactions (facile reaction with air at low temperature).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号