首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and Molecular Basis of the Catalytic Mechanism of Geranyl Pyrophosphate C6-Methyltransferase: Creation of an Unprecedented Farnesyl Pyrophosphate C6-Methyltransferase
Authors:Hayama Tsutsumi  Yoshitaka Moriwaki  Tohru Terada  Kentaro Shimizu  Kazuo Shin-ya  Yohei Katsuyama  Yasuo Ohnishi
Abstract:Prenyl pyrophosphate methyltransferases enhance the structural diversity of terpenoids. However, the molecular basis of their catalytic mechanisms is poorly understood. In this study, using multiple strategies, we characterized a geranyl pyrophosphate (GPP) C6-methyltransferase, BezA. Biochemical analysis revealed that BezA requires Mg2+ and solely methylates GPP. The crystal structures of BezA and its complex with S-adenosyl homocysteine were solved at 2.10 and 2.56 Å, respectively. Further analyses using site-directed mutagenesis, molecular docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations revealed the molecular basis of the methylation reaction. Importantly, the function of E170 as a catalytic base to complete the methylation reaction was established. We also succeeded in switching the substrate specificity by introducing a W210A substitution, resulting in an unprecedented farnesyl pyrophosphate C6-methyltransferase.
Keywords:biosynthesis  enzyme catalysis  methyltransferase  rational engineering  terpenoids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号