首页 | 本学科首页   官方微博 | 高级检索  
     


On the Importance of Decarbonylation as a Side‐Reaction in the Ruthenium‐Catalysed Dehydrogenation of Alcohols: A Combined Experimental and Density Functional Study
Authors:Dr. Nicolas Sieffert  Romain Réocreux  Patrizia Lorusso  Prof. Dr. David J. Cole‐Hamilton  Prof. Dr. Michael Bühl
Affiliation:1. Département de Chimie Moléculaire, UMR‐5250, ICMG FR‐2607 CNRS, Université Joseph Fourier Grenoble I, 301 rue de la Chimie, BP 53, 38041 Grenoble Cedex 9 (France);2. Laboratoire de Chimie, Ecole Normale Superieure de Lyon, 46 Allee d'Italie, 69364 Lyon Cedex 07 (France);3. EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST (UK)
Abstract:We report a density functional study (B97‐D2 level) of the mechanism(s) operating in the alcohol decarbonylation that occurs as an important side‐reaction during dehydrogenation catalysed by [RuH2(H2)(PPh3)3]. By using MeOH as the substrate, three distinct pathways have been fully characterised involving either neutral tris‐ or bis‐phosphines or anionic bis‐phosphine complexes after deprotonation. α‐Agostic formaldehyde and formyl complexes are key intermediates, and the computed rate‐limiting barriers are similar between the various decarbonylation and dehydrogenation paths. The key steps have also been studied for reactions involving EtOH and iPrOH as substrates, rationalising the known resistance of the latter towards decarbonylation. Kinetic isotope effects (KIEs) were predicted computationally for all pathways and studied experimentally for one specific decarbonylation path designed to start from [RuH(OCH3)(PPh3)3]. From the good agreement between computed and experimental KIEs (observed kH/kD=4), the rate‐limiting step for methanol decarbonylation has been ascribed to the formation of the first agostic intermediate from a transient formaldehyde complex.
Keywords:decarbonylation  density functional calculations  isotope effects  reaction mechanisms  ruthenium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号