首页 | 本学科首页   官方微博 | 高级检索  
     

三维有序大孔钙钛矿型氧化物LaFeO3的合成及甲烷化学链重整性能
引用本文:何方,赵坤,黄振,李新爱,魏国强,李海滨. 三维有序大孔钙钛矿型氧化物LaFeO3的合成及甲烷化学链重整性能[J]. 催化学报, 2013, 34(6): 1242-1249. DOI: 10.1016/S1872-2067(12)60563-4
作者姓名:何方  赵坤  黄振  李新爱  魏国强  李海滨
作者单位:a 中国科学院广州能源研究所,中国科学院可再生能源与天然气水合物重点实验室, 广东广州510640;
b 中国科学院大学, 北京100049
基金项目:support by the National Natural Science Foundation of China (51076154);the National Key Technology R&D Program of the 12th Five‐Year Plan of China (2011BAD15B05);the Science & Technology Research Project of Guangdong Province (2010B010900047)~~
摘    要:采用无皂乳液聚合法制备了聚苯乙烯(PS)聚合物微球,并采用胶晶模板法制备了三维有序大孔3DOM LaFeO3钙钛矿型氧化物.通过扫描电镜、X射线衍射和傅里叶变换红外光谱等手段对氧化物的性能进行了表征.利用程序升温还原和多次氧化还原循环反应评价了氧化物的反应性,并在固定床反应器上研究了其甲烷氧化性能.结果表明,与离心法和蒸发法相比,垂直沉积法获得的PS微球模板排列更均匀有序;前驱物溶剂及浓度对最终的三维有序大孔材料的结构有显著影响,利用乙醇为前驱物溶剂所制备的样品比利用乙烯为溶剂的样品具有更好的三维有序大孔结构,前驱物乙醇溶液浓度在1.0 mol/L为宜.甲烷氧化实验表明,3DOM-LaFeO3钙钛矿型氧化物中存在两种氧物种:表面吸附氧和体相晶格氧.表面吸附氧主要在反应初期将甲烷完全氧化为CO2和水蒸汽,而体相晶格氧主要将甲烷部分氧化为H2和CO.在甲烷部分氧化反应中,三维有序大孔LaFeO3钙钛矿型氧化物比相同质量的纳米LaFeO3氧化物提供了更多的氧,并且可使甲烷在较宽的反应阶段生成H2和CO摩尔比为2:1的合成气,从而更有利于后续的费托合成等工艺.

关 键 词:三维有序大孔钙钛矿氧化物  氧载体  合成气  化学链重整  甲烷
收稿时间:2013-01-14

Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane
HE Fang a,ZHAO Kun a,b ,HUANG Zhen a ,LI Xin’ai a ,WEI Guoqiang a,b ,LI Haibin. Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane[J]. Chinese Journal of Catalysis, 2013, 34(6): 1242-1249. DOI: 10.1016/S1872-2067(12)60563-4
Authors:HE Fang a  ZHAO Kun a  b   HUANG Zhen a   LI Xin’ai a   WEI Guoqiang a  b   LI Haibin
Affiliation:a The Key Laboratory of Renewable Energy and Gas Hydrate of Chinese Academy of Sciences, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Three-dimensionally ordered macroporous (3DOM) LaFeO3 perovskite-type oxides were synthesized using a polystyrene colloidal crystal templating method. The obtained 3DOM LaFeO3 was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The reactivity of the perovskite-type oxides was evaluated using temperature-programmed reduction and multicyclic redox reactions by exposing them to an alternating methane and air atmosphere. The methane oxidation performance of the oxides was investigated in a fixed-bed reactor. The effect of the self-assembly method on the structure of the polystyrene template was also studied. A vertical deposition method yielded a more uniform and orderly polystyrene template than those obtained by centrifugation and evaporation techniques. The solvent and concentration of the precursor solution were the major factors to affect the prepared 3DOM perovskite. SEM analysis showed that samples synthesized with ethanol precursor solvent exhibited a better 3DOM structure than those produced with ethylene glycol, and that 1.0 mol/L may be an optimal precursor solution concentration. XRD and FTIR results suggested that the obtained 3DOM LaFeO3 was pure crystalline perovskite. Two kinds of oxygen species were found to exist on the 3DOM perovskites: surface adsorbed oxygen and bulk lattice oxygen. The surface oxygen contributed to the complete oxidization of methane to CO2 and H2O because of its higher reactivity, while the bulk lattice oxygen tended towards partial methane oxidation to H2 and CO. The available oxygen in the 3DOM LaFeO3 was higher than that of the same mass of non-3DOM LaFeO3 during the partial oxidation of methane. Methane was partially oxidized into syngas with a H2/CO ratio of around 2:1 in a wide time range of the reactions. The generated H2/CO = 2 syngas was suitable for subsequent gas-to-liquids processes, such as Fischer-Tropsch and/or methanol synthesis.
Keywords:Three-dimensionally ordered macroporous LaFeO3 perovskite  Oxygen carrier  Synthesis gas  Chemical-looping reforming  Methane
本文献已被 CNKI 等数据库收录!
点击此处可从《催化学报》浏览原始摘要信息
点击此处可从《催化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号