首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical synthesis and molecular recognition of phosphatase-resistant analogues of phosphatidylinositol-3-phosphate
Authors:Xu Yong  Lee Stephanie A  Kutateladze Tatiana G  Sbrissa Diego  Shisheva Assia  Prestwich Glenn D
Institution:Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA.
Abstract:The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. To provide chemical tools to study the changes in cell physiology mediated by these lipids, three new metabolically stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P) were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-(monofluoromethyl)phosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl, and dibutyryl chains. In addition, we introduce a new phosphorylation reagent, (monofluoromethyl)phosphonyl chloride, which has general applications for the preparation of "pKa-matched" monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labeled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)P analogues into membrane-mimetic dodecylphosphocholine micelles. In addition, the PtdIns(3)P analogues with dioleoyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号