首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的ELM实时识别研究
引用本文:黄尧,夏凡,杨宗谕,钟武律,刘春华. 基于深度学习的ELM实时识别研究[J]. 核聚变与等离子体物理, 2020, 40(4): 300-308. DOI: 10.16568/j.0254-6086.202004003
作者姓名:黄尧  夏凡  杨宗谕  钟武律  刘春华
作者单位:(核工业西南物理研究院,成都 610041)
基金项目:国家磁约束核聚变能发展研究专项;国家自然科学基金
摘    要:基于深度学习的方法,在HL-2A装置上开发出了一套边缘局域模(ELM)实时识别算法。算法使用5200次放电数据(约24.19万数据切片)进行学习,得到一个深度为22层的卷积神经网络。为衡量算法的识别能力,识别了HL-2A装置自2009年实现稳定ELMyH模放电以来所有历史数据(约26000次放电数据),共识别出1665次H模放电,其中误识别35次,误报率为2.10%。在实际的1634次H模放电中,漏识别4次,漏识别率为0.24%。该误报率和漏报率可以满足ELM实时识别的精度要求。识别算法在实时控制环境下,对单个时间点的平均计算时间为0.46ms,可以满足实时控制的计算速度要求。

关 键 词:H模  神经网络  深度学习  HL-2A装置
收稿时间:2019-03-21

ELM real-time recognition research based on deep learning
HUANG Yao,XIA Fan,YANG Zong-yu,ZHONG Wu-lü,LIU Chun-hua. ELM real-time recognition research based on deep learning[J]. Nuclear Fusion and Plasma Physics, 2020, 40(4): 300-308. DOI: 10.16568/j.0254-6086.202004003
Authors:HUANG Yao  XIA Fan  YANG Zong-yu  ZHONG Wu-lü  LIU Chun-hua
Affiliation:(Southwestern Institute of Physics, Chengdu 610041)
Abstract:Based on the deep learning method, this paper introduced an ELM real-time recognition algorithm on HL-2A tokamak. The algorithm used data from 5200 shots (about 241,900 data slices) for learning and a 22-layer convolutional neural network was obtained. The algorithm has recognized all historical data of HL-2A since it achieved stable ELMy H-mode discharge in 2009. A total of 1665 shots of H-mode have been recognized, of which 35 shots were misidentified, with the false positive rate (FPR) of 2.10%. In the actual 1634 shots of H-mode, the system missed to recognize 4 of them, with the false negative rate (FNR) of 0.24%. The FPR and FNR fulfill the precision requirements of real-time ELM recognition. In the simulated real-time environment, the algorithm’s average calculation time of a single slice is 0.46 milliseconds, which satisfy the calculation speed requirements of the real-time ELM recognition.
Keywords:H-mode  Neural network  Deep learning  HL-2A tokamak.  
本文献已被 万方数据 等数据库收录!
点击此处可从《核聚变与等离子体物理》浏览原始摘要信息
点击此处可从《核聚变与等离子体物理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号