首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing
Authors:Xuan Liu  Jun Zhang
Institution:State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
Abstract:In this study, experiments of single-file pedestrian movement were conducted and the movement parameters of pedestrians were extracted with a digital image processing method based on a mean-shift algorithm. The microscopic characteristics of pedestrian dynamics, including velocity, density, and lateral oscillation, as well as their interrelations, were obtained and analyzed. Firstly, we studied the lateral oscillation phenomena of pedestrian movement. The result indicates that the trajectory of pedestrians presents a wavy form and the amplitude of the oscillation remains about 5.5 cm when the pedestrians move with free walking velocity, which is the velocity when there is no obvious interaction between sequential pedestrians; but when the movement velocity decreases to 0.27 m/s, the amplitude of oscillation increases to 13 cm. With increasing density, the velocity decreases and the amplitude of oscillation presents a linear increase trend. The increasing oscillation amplitude widens the occupation area of a pedestrian with low velocity, so as to make the moving efficiency even worse. Secondly, we studied the frequency of the oscillation; the result indicates that the frequency remains at 2 Hz when pedestrians move with a free walking velocity, but it presents a similar linear decrease trend when the velocity changes to a lower value. The decrease of oscillation frequency is also a negative feedback to the moving efficiency. Thirdly, it is found that with the increase of crowd density, the time interval between two sequential pedestrians increases, though the space gap between them decreases. The quantitative relation between time interval and crowd density is obtained. The study in this paper provides fundamental data and a basic method for understanding pedestrian dynamics, developing and validating evacuation models. The results are also expected to be useful for evacuation design.
Keywords:Evacuation  Pedestrian flow  Digital image processing  Mean-shift algorithm  Experiment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号