Hydroformylation of oct-1-ene catalyzed by dinuclear gem-dithiolato-bridged rhodium(I) complexes and phosphorus donor ligands |
| |
Authors: | Angel B. Rivas, Jesú s J. P rez-Torrente, Alvaro J. Pardey, Anna M. Masdeu-Bult , Montserrat Di guez,Luis A. Oro |
| |
Affiliation: | Angel B. Rivas, Jesús J. Pérez-Torrente, Alvaro J. Pardey, Anna M. Masdeu-Bultó, Montserrat Diéguez,Luis A. Oro |
| |
Abstract: | The dinuclear gem-dithiolato bridged compounds [Rh2(μ-S2Cptn)(cod)2] (1) (CptnS22− = 1,1-cyclopentanedithiolato), [Rh2(μ-S2Chxn)(cod)2] (2) (ChxnS22− = 1,1-cyclohexanedithiolato), [Rh2(μ-S2CBn2)(cod)2] (3) (Bn2CS22− = 1,3-diphenyl-2,2-dithiolatopropane) and [Rh2(μ-S2CiPr2)(cod)2] (4) (iPr2CS22− = 2,4-dimethyl-2,2-dithiolatopentane) dissolved in toluene in the presence of monodentate phosphine or phosphite P-donor ligands under carbon monoxide/hydrogen (1:1) atmosphere are efficient catalysts for the hydroformylation of oct-1-ene under mild conditions (6.8 atm of CO/H2 and 80 °C). The influence of the gem-dithiolato ligand, the P-donor co-catalyst and the P/Rh ratio on the catalytic activity and selectivity has been explored. Aldehyde selectivities higher than 95% and turnover frequencies up to 245 h−1 have been obtained using P(OMe)3 as modifying ligand. Similar activity figures have been obtained using P(OPh)3 although the selectivities are lower. Regioselectivities toward linear aldehyde are in the range 75–85%. The performance of the catalytic systems [Rh2(μ-S2CR2)(CO)2(PPh3)2]/PPh3 has been found to be comparable to the systems [Rh2(μ-S2CR2)(cod)2] at the same P/Rh ratio. The system [Rh2(μ-S2CBn2)(cod)2] (3)/P(OPh)3 has been tested in the hydroformylation-isomerization of trans-oct-2-ene. Under optimized conditions up to 54% nonanal was obtained. Spectroscopic studies under pressure (HPNMR and HPIR) evidenced the formation of hydrido mononuclear species under catalytic conditions that are most probably responsible for the observed catalytic activity. |
| |
Keywords: | Homogeneous catalysis Hydroformylation Dinuclear complexes Gem-dithiolato ligands Rhodium HPNMR HPIR |
本文献已被 ScienceDirect 等数据库收录! |
|