首页 | 本学科首页   官方微博 | 高级检索  
     


Micro sequential injection: fermentation monitoring of ammonia, glycerol, glucose, and free iron using the novel lab-on-valve system
Authors:Wu C H  Scampavia L  Ruzicka J  Zamost B
Affiliation:Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA.
Abstract:Using an integrated lab-on-valve manifold in a microfluidic sequential injection format (microSI), automated sample processing has been developed for off-line and on-line monitoring of small-scale fermentations. Spectrophotometric assays of ammonia, glucose, glycerol, and free iron were downscaled to use micro-quantities of commercial reagents. By monitoring the reaction rate, the response curves in a stopped-flow mode generate linear calibration curves for ammonia [r2 = 1.000 (0.9% SE)], glycerol [r2 = 0.999 (1.1% SE)], glucose [r2 = 0.999 (1.1% SE)], and free iron [r2 = 0.999 (1.5% SE)]. Since sample dilution and reagent quantities are easily adjusted within the programmable SI format, the lab-on-valve system can accommodate samples over a wide concentration range (ammonia: 3-1200 ppm; glycerol: 20-120 ppm; glucose: 35-1000 ppm; and free iron: 80-400 ppm). This work demonstrates the key advantages of miniaturization through the reduction of sample and reagent use, minimizing waste and providing a compact yet reliable instrument. The lab-on-valve manifold uses a universal hardware configuration for all analyses, only requiring changes in software protocol and choice of reagents. All of these features are of particular importance to small-scale experimental fermentation where multiple analyte analyses are needed in real-time using small sample volumes. It is hoped that this first real-life application of the lab-on-valve manifold will serve not only as a model system to downscale assays in a practical fashion, but will also inspire and promote the use of the integrated microSI manifold approach for a wider range of biotechnological applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号