首页 | 本学科首页   官方微博 | 高级检索  
     


Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties
Authors:M. A. Llorente  A. L. Andrady  J. E. Mark
Abstract:Elastomeric networks were prepared by tetrafunctionally end-linking mixtures of various proportions of relatively long and very short polydimethylsiloxane (PDMS) chains. The former had a number-average molecular weight of 18,500 and the latter either 660 or 220 g mole?1. The series of (unfilled) bimodal networks thus prepared were studied in elongation to the rupture point at 25°C, and in swelling equilibrium in benzene at room temperature. Elasticity constants characterizing the Gaussian regions of the stress–strain isotherms, and values of the degree of equilibrium swelling were used to evaluate the most recent molecular theories of rubberlike elasticity. The isotherms also gave values of the elongation at which the modulus begins to increase anomalously because of limited chain extensibility, and values of the elongation and nominal stress at the point of rupture. These results were interpreted in terms of the known configurational characteristics of the constituent PDMS chains. Values of the energy or work required for rupture were used as an overall measure of the “toughness” of the networks. The very short chains were found to give a marked increase in toughness, through an increase in ultimate strength without the usual corresponding decrease in maximum extensibility. A variety of additional experiments will be required in order to elucidate the molecular origins of this important effect.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号