Abstract: | The relation between the thermal behavior of extended-chain crystals (ECCs) of polyethylene and the phase transitions, i.e., orthorhombic ? hexagonal ? melt, of polyethylene at high pressures above about 400 MPa has been studied by high-pressure differential thermal analysis (DTA), and with a high-pressure and high-temperature x-ray diffraction apparatus equipped with a position-sensitive proportional counter measuring system. The original sample used in this study consists mainly of two kinds of ECC, which we designate as “ordinary extended-chain” crystals (OECCs) and “highly-extended-chain” crystals (HECCs). Experimental results at pressures below 300 MPa substantiate the results previously reported: i.e., the phase diagram indicating the relation between the melting temperatures and pressure for the OECCs and HECCs can be determined for pressures up to 500 MPa. In heating at pressures above about 500 MPa, the peak intensity of the (100) reflection of the hexagonal structure decreases in two stages with increasing temperature. The phenomenon corresponds to the thermal behavior determined by high-pressure DTA in which two small endothermic peaks can be observed at temperatures above that of the crystal transition evidenced by the strong peak. This phenomenon suggests melting in two stages of hexagonal structures with different thermal stabilities, and that the change at higher temperature may be due to fusion of the hexagonal phase annealed either below or above the transition temperature. |