首页 | 本学科首页   官方微博 | 高级检索  
     


A computational study on nanocrystalline SnO2: Adsorption of CO and O2 onto defective nanograins
Authors:A.M. Mazzone  V. Morandi
Affiliation:CNR-IMM, Via Gobetti 101, 40129 Bologna, Italy
Abstract:This work presents a study of the adsorption properties of defective nanostructures. The calculations have quantum mechanical detail and are based on a semi-empirical Hamiltonian, which is applied to the evaluation of both the electronic structure and of the conductance. The material considered in this study, i.e. SnO2, has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small molecules. In the following calculations crystalline SnO2 nanograins, with a size and shape comparable with the experimental ones, have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and the adsorbed system is generated by depositing a gaseous molecule, either CO or O2, above an atom on the grain surface. The calculations show that the presence of the defects enhances the grain cohesion and favors adsorption. The conductance has a functional relationship with the structure and the defective state of the nanograins and its dependence on these quantities parallels the one of the binding energy.
Keywords:SnO2 nanograins   Defects   CO adsorption   Ab initio calculations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号