首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants
Authors:Srinivasan Vibha  Blankschtein Daniel
Institution:Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Abstract:A molecular-thermodynamic theory is developed to model the micellization of fluorocarbon surfactants in aqueous solutions, by combining a molecular model that evaluates the free energy of micellization of fluorocarbon surfactant micelles with a previously developed thermodynamic framework describing the free energy of the micellar solution. In the molecular model of micellization developed, a single-chain mean-field theory is combined with an appropriate rotational isomeric state model of fluorocarbon chains to describe the packing of the fluorocarbon surfactant tails inside the micelle core. Utilizing this single-chain mean-field theory, the packing free energies of fluorocarbon surfactants are evaluated and compared with those of their hydrocarbon analogues. We find that the greater rigidity of the fluorocarbon chain promotes its packing in micellar aggregates of low curvatures, such as bilayers. In addition, the mean-field approach is utilized to predict the average conformational characteristics (specifically, the bond order parameters) of fluorocarbon and hydrocarbon surfactant tails within the micelle core, and the predictions are found to agree well with the available experimental results. The electrostatic effects in fluorocarbon ionic surfactant micelles are modeled by allowing for counterion binding onto the charged micelle surface, which accounts explicitly for the effect of the counterion type on the micellar solution properties. In addition, a theoretical formulation is developed to evaluate the free energy of micellization and the size distribution of finite disklike micelles, which often form in the case of fluorocarbon surfactants. We find that, compared to their hydrocarbon analogues, fluorocarbon surfactants exhibit a greater tendency to form cylindrical or disklike micelles, as a result of their larger molecular volume as well as due to the greater conformational rigidity of the fluorocarbon tails. The molecular-thermodynamic theory developed is then applied to several ionic fluorocarbon surfactant-electrolyte systems, including perfluoroalkanoates and perfluorosulfonates with added LiCl or NH(4)Cl, and various micellar solution properties, including critical micelle concentrations (cmc's), optimal micelle shapes, and average micelle aggregation numbers, are predicted. The predicted micellar solution properties agree reasonably well with the available experimental results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号