首页 | 本学科首页   官方微博 | 高级检索  
     


Mesoscopic quantum cryptography
Authors:S. N. Molotkov
Affiliation:1.Institute of Solid State Physics,Russian Academy of Sciences,Chernogolovka, Moscow oblast,Russia;2.Academy of Cryptography,Russian Academy of Sciences,Moscow,Russia;3.Faculty of Computational Mathematics and Cybernetics,Moscow State University,Moscow,Russia
Abstract:Since a strictly single-photon source is not yet available, in quantum cryptography systems, one uses, as information quantum states, coherent radiation of a laser with an average number of photons of μ ≈ 0.1–0.5 in a pulse, attenuated to the quasi-single-photon level. The linear independence of a set of coherent quasi-single-photon information states leads to the possibility of unambiguous measurements that, in the presence of losses in the line, restrict the transmission range of secret keys. Starting from a certain value of critical loss (the length of the line), the eavesdropper knows the entire key, does not make errors, and is not detected—the distribution of secret keys becomes impossible. This problem is solved by introducing an additional reference state with an average number of photons of μcl ≈ 103–106, depending on the length of the communication line. It is shown that the use of a reference state does not allow the eavesdropper to carry out measurements with conclusive outcome while remaining undetected. A reference state guarantees detecting an eavesdropper in a channel with high losses. In this case, information states may contain a mesoscopic average number of photons in the range of μ q ≈ 0.5–102. The protocol proposed is easy to implement technically, admits flexible adjustment of parameters to the length of the communication line, and is simple and transparent for proving the secrecy of keys.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号