首页 | 本学科首页   官方微博 | 高级检索  
     检索      

抗生素菌渣热解N官能团变化特征及其与NO_x前驱物关系研究
引用本文:抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究.抗生素菌渣热解N官能团变化特征及其与NO_x前驱物关系研究[J].燃料化学学报,2017,45(10):1219-1229.
作者姓名:抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究
作者单位:1. Key Laboratory of Renewable Energy, CAS, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
基金项目:国家自然科学基金(51676195,51661145022)资助
摘    要:以青霉素菌渣(PMW)和土霉素菌渣(TMW)为对象,在水平管式反应器中进行快速热解,采用X射线光电子能谱(XPS)表征和化学吸收-分光光度定量分析方法,研究了抗生素菌渣热解N官能团变化特征及其与NO_x前驱物的关系。结果表明,菌渣燃料N官能团分为无机N(N-IN)和蛋白质及其水解产物N(N-A)两种。决定菌渣NO_x前驱物以NH_3-N为主,N官能团主要为N-A,PMW占81.1%、TMW占59.0%。在低温区间,N-IN在150-250℃分解和N-A在250-450℃转化,为NH3-N主要来源;PM W和TM W产率分别为20.9%和25.6%,而HCN-N产率小于2%,基本与燃料N官能团特征无关;该阶段伴随吡啶N(N-6)和吡咯N(N-5)的生成及转化,峰值在350-400℃。在高温区间,半焦N反应,主要是N-6和N-5的转化,为NH_3-N和部分HCN-N的来源;该阶段伴随少量更稳定质子化吡啶N(N-Q)和氮氧化物N(N-X)生成。由于N-IN和不稳定N-A低温下会快速分解,250-300℃下菌渣半焦N去除高达40%、能量损失可控制在25%,因此,采用合适低温热解处理菌渣,在保证能量前提下可有效去除燃料中的N。

关 键 词:抗生素菌渣  N官能团  NOx前驱物  低温热解  N去除  
收稿时间:2017-05-25

Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes
ZHAN Hao,LIN Jun-heng,HUANG Yan-qin,YIN Xiu-li,LIU Hua-cai,YUAN Hong-you,WU Chuang-zhi.Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J].Journal of Fuel Chemistry and Technology,2017,45(10):1219-1229.
Authors:ZHAN Hao  LIN Jun-heng  HUANG Yan-qin  YIN Xiu-li  LIU Hua-cai  YUAN Hong-you  WU Chuang-zhi
Abstract:On the basis of rapid pyrolysis of two antibiotic mycelial wastes (AMWs), viz., penicillin mycelia waste (PMW) and terramycinmycelial waste (TMW), in a horizontal tubular quartz reactor, evolution of nitrogen functionalities and their relation to NOx precursors were investigated with the help of XPS and chemical absorption-spectrophotometry methods.The results indicate that inorganic-N (N-IN) and amide-N/amine-N/amino-N (N-A) are two kinds of nitrogen functionalities in the raw AMWs samples, determining the predominance of NH3-N among NOx precursors. N-A is found to be the main one with the proportion of 81.1% and 59.0% for PMW and TMW, respectively. At low temperatures, the decomposition of N-IN and the conversion of N-A mainly occur at 150-250℃ and 250-450℃, respectively, which are two routes for most NH3-N with yields of 20.9% (PMW) and 25.6% (TMW). While HCN-N is produced with a small amount less than 2%, having no relationship with the characteristics of nitrogen functionalities in fuels. Besides, pyridinic-N (N-6) and pyrrolic-N (N-5) are also formed and then converted with peak values at 350-400℃. At high temperatures, the conversion of N-6 and N-5 is prevailing, leading to the basically equal increments on NH3-N and HCN-N. Simultaneously, a minor amount of more stable quaternary nitrogen (N-Q) and N-oxide (N-X) is produced. Typically, due to the rapid decomposition of N-IN and labile N-A at low-temperature pyrolysis, nitrogen removal can reach up to 40% while energy loss can be controlled within 25% when pyrolyzing at 250-300℃. As a result, low-temperature pyrolysis could be an effective method for nitrogen removal whereas preserving the energy in AMWs.
Keywords:AMWs  nitrogen functionalities  NOx precursors  low-temperature pyrolysis  nitrogen removal  
本文献已被 CNKI 等数据库收录!
点击此处可从《燃料化学学报》浏览原始摘要信息
点击此处可从《燃料化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号