首页 | 本学科首页   官方微博 | 高级检索  
     


Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4
Authors:Sergei Kotelnikov  Andrey Alekseenko  Cong Liu  Mikhail Ignatov  Dzmitry Padhorny  Emiliano Brini  Mark Lukin  Evangelos Coutsias  Ken A. Dill  Dima Kozakov
Affiliation:1.Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA;2.Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA;3.Innopolis University, Innopolis, Russia;4.Department of Chemistry, Stony Brook University, Stony Brook, NY, USA;5.Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA;6.Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA;7.Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
Abstract:We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号