首页 | 本学科首页   官方微博 | 高级检索  
     

结构系统可靠性优化设计的神经网络方法
引用本文:张义民,张雷. 结构系统可靠性优化设计的神经网络方法[J]. 计算力学学报, 2005, 22(3): 257-261
作者姓名:张义民  张雷
作者单位:吉林大学,南岭校区机械科学与工程学院,吉林,长春,130025;吉林大学,南岭校区机械科学与工程学院,吉林,长春,130025
基金项目:国家自然科学基金(50175043)资助项目.
摘    要:针对具有非正态随机参数的可靠性(优化)设计,提出了随机摄动-Edgeworth级数方法,采用该方法将可靠性概率约束转化为等价的确定型约束,可以迅速准确地获得优化设计信息。针对具有多失效模式的结构系统可靠性优化设计,提出了随机模拟一神经网络方法(MCS—NN),将随机模拟方法与神经网络技术有机结合,为结构系统可靠性优化设计提供了一种新方法。

关 键 词:非正态随机参数  可靠性优化设计  随机摄动技术  Edgeworth级数  MCS-NN
文章编号:1007-4708(2005)03-0257-05
修稿时间:2003-07-22

Reliability-based structural optimization using neural network
ZHANG Yi-min,ZHANG Lei. Reliability-based structural optimization using neural network[J]. Chinese Journal of Computational Mechanics, 2005, 22(3): 257-261
Authors:ZHANG Yi-min  ZHANG Lei
Affiliation:ZHANG Yi-min~,ZHANG Lei
Abstract: In this study two methods are examined. In the first one, the probabilistic perturbation method and the Edgeworth series are employed to give the theoretical formula for reliability-based optimization with non-normal random parameters. Therefore, the probabilistic constraints are transformed into deterministic constraints, and then the reliability-based optimal design parameters could be obtained accurately and quickly. In the second one, neural network (NN) and Monte Carlo simulation (MCS) are applied in reliability-based structural optimization with more failure modes. The neural network is used to simulate the relation expression between the design parameters and the structural reliability based on Monte Carlo simulation. Therefore, the structural probabilistic constraints are transformed into a single equivalent deterministic constraint approximately by NN, and then the process of reliability-based optimization can be implemented conveniently.
Keywords:non-normal random parameters  reliability-based optimization  the probabilistic pertur-)bation method  the Edgeworth series  MCS-NN
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算力学学报》浏览原始摘要信息
点击此处可从《计算力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号