首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of the phenoxyl radical in model complexes for the Cu(B) site of cytochrome c oxidase: steady-state and transient absorption measurements, UV resonance raman spectroscopy, EPR spectroscopy, and DFT calculations for M-BIAIP
Authors:Nagano Yasutomo  Liu Jin-Gang  Naruta Yoshinori  Ikoma Tadaaki  Tero-Kubota Shozo  Kitagawa Teizo
Institution:Okazaki Institute for Integrative Bioscience, National Institutes of Natural Science, Okazaki 444-8787, Japan.
Abstract:Physicochemical properties of the covalently cross-linked tyrosine-histidine-Cu(B) (Tyr-His-Cu(B)) unit, which is a minimal model complex M(II)-BIAIPBr]Br (M = Cu(II), Zn(II)) for the Cu(B) site of cytochrome c oxidase, were investigated with steady-state and transient absorption measurements, UV resonance Raman (UVRR) spectroscopy, X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations. The pH dependency of the absorption spectra reveals that the pK(a) of the phenolic hydroxyl is ca. 10 for the Cu(II) model complex (Cu(II)-BIAIP) in the ground state, which is similar to that of p-cresol (tyrosine), contrary to expectations. The bond between Cu(II) and nitrogen of cross-linked imidazole cleaves at pH 4.9. We have successfully obtained UVRR spectra of the phenoxyl radical form of BIAIPs and have assigned bands based on the previously reported isotope shifts of Im-Ph (2-(1-imidazoyl)-4-methylphenol) (Aki, M.; Ogura, T.; Naruta, Y.; Le, T. H.; Sato, T.; Kitagawa, T. J. Phys. Chem. A 2002, 106, 3436-3444) in combination with DFT calculations. The upshifts of the phenoxyl vibrational frequencies for 8a (C-C stretching), 7a' (C-O stretching), and 19a, and the Raman-intensity enhancements of 19b, 8b, and 14 modes indicate that UVRR spectra are highly sensitive to imidazole-phenol covalent linkage. Both transient absorption measurements and EPR spectra suggest that the Tyr-His-Cu(B) unit has only a minor effect on the electronic structure of the phenoxyl radical form, although our experimental results appear to indicate that the cross-linked Tyr radical exhibits no EPR. The role of the Tyr-His-Cu(B) unit in the enzyme is discussed in terms of the obtained spectroscopic parameters of the model complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号