首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen dissociative chemisorption and desorption on saturated subnano palladium clusters (Pdn, n = 2-9)
Authors:Zhou Chenggang  Yao Shujuan  Wu Jinping  Forrey Robert C  Chen Liang  Tachibana Akitomo  Cheng Hansong
Institution:Institute of Theoretical Chemistry and Computational Materials Science, China University of Geosciences, Wuhan, 430074, China.
Abstract:H(2) sequential dissociative chemisorption on small palladium clusters was studied using density functional theory. The chosen clusters Pd(n) (n = 2-9) are of the lowest energy structures for each n. H(2) dissociative chemisorption and subsequent H atom migration on the bare Pd clusters were found to be nearly barrierless. The dissociative chemisorption energy of H(2) and the desorption energy of H atom in general decrease with the coverage of H atoms and thus the catalytic efficiency decreases as the H loading increases. These energies at full cluster saturation were identified and found to vary in small energy ranges regardless of cluster size. As H loading increases, the clusters gradually change their bonding from metallic character to covalent character. For the selected Pd clusters, the capacity to adsorb H atoms increases almost proportionally with cluster size; however, it was found that the capacity of Pd clusters to adsorb H atoms is, on average, substantially smaller than that of small Pt clusters, suggesting that the catalytic efficiency of Pt nanoparticles is superior to Pd nanoparticles in catalyzing dissociative chemisorption of H(2) molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号