Infrared Spectroscopic Studies on the Surface Chemistry of High‐Surface‐Area Gallia Polymorphs |
| |
Authors: | M. Rodrí guez Delgado,C. Otero Are n |
| |
Affiliation: | M. Rodríguez Delgado,C. Otero Areán |
| |
Abstract: | Polymorphs α, β, and γ of Ga2O3 having hexagonal (corundum‐type), monoclinic and cubic (spinel‐type) structure, respectively, were prepared in a high‐surface‐area form, and characterized by powder X‐ray diffraction. Nitrogen adsorption at 77 K showed these gallia samples to have specific surface areas of 77 (α‐Ga2O3), 40 (β‐Ga2O3) and 120 m2 g?1 (γ‐Ga2O3). Fourier transform infrared spectroscopy of adsorbed carbon monoxide (at 77 K) and pyridine (at room temperature) showed that the three gallia polymorphs have a very similar surface Lewis acidity, regardless of their different crystal structures. This Lewis acidity was assigned, mainly, to coordinatively unsaturated tetrahedral Ga3+ ions situated on the surface of the small crystallites which constitute the different metal oxide varieties. Ga3+···CO adducts formed after CO adsorption gave (in all cases) a characteristic C–O stretching band at 2195–2200 cm?1, while Lewis‐type adducts formed with adsorbed pyridine were characterized by IR absorption bands at 1610–1612 and 1446–1450 cm?1. The three (partially hydroxylated) gallia polymorphs showed also a very weak Brønsted acidity, which they manifested by forming hydrogen‐bonded adducts with both CO and pyridine; however no protonation of adsorbed pyridine occurred. |
| |
Keywords: | Gallium oxide Gallia polymorphs IR spectroscopy Surface acidity Structure‐acidity relationship |
|
|