首页 | 本学科首页   官方微博 | 高级检索  
     

用一种少参数非线性自适应滤波器自适应预测低维混沌时间序列
引用本文:张家树,肖先赐. 用一种少参数非线性自适应滤波器自适应预测低维混沌时间序列[J]. 物理学报, 2000, 49(12): 2333-2339
作者姓名:张家树  肖先赐
作者单位:电子科技大学电子工程系,成都 610054
基金项目:国防预研基金(批准号:98JS05.4.1.DZ0205)资助的课题.
摘    要:基于混沌动力系统的相空间延迟坐标重构,利用混沌序列固有的确定性和非线性,提出了用 于混沌时间序列预测的一种少参数非线性自适应滤波预测模型.该预测模型在Volterra自适 应滤波器的基础上引入sigmoid函数来减少待定参数.实验研究表明,这种少参数非线性自适 应滤波预测器仅需用50个样本经20次预训练后,就能有效地预测一些低维混沌序列,且这种 少参数非线性自适应滤波预测器更便于工程实现.关键词:混沌非线性自适应预测少参数非线性自适应滤波器自适应算法

关 键 词:混沌  非线性自适应预测  少参数非线性自适应滤波器  自适应算法
收稿时间:2000-05-03
修稿时间:2000-05-03

NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES WITH A REDUCED PARAMETER NO NLINEAR ADAPTIVE FILTER
ZHANG JIA-SHU,XIAO XIAN-CI. NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES WITH A REDUCED PARAMETER NO NLINEAR ADAPTIVE FILTER[J]. Acta Physica Sinica, 2000, 49(12): 2333-2339
Authors:ZHANG JIA-SHU  XIAO XIAN-CI
Abstract:Based on the deterministic and nonlinear characterization of the chaotic signals, a new reduced parameter nonlinear adaptive filter is proposed to make adaptive predictions of chaotic time series. The sigmoid function is introduced to nonlinear predictive filter for reducing unknown parameters of the second-order Volterra filters. A reduced parameter nonlinear adaptive filtering prediction schemeis suggested in order to track current chaotic trajectory by using precedent predictive error for adjusting filter parameters rather than approximating global o r local map of chaotic series. Experimental results show that this reduced param eter nonlinear adaptive filter, which is only trained with 50 samples and 20 ite rations, can be successfully used to make one-step and multi-step predictions of chaotic time series.
Keywords:chaos   nonlinear adaptive prediction   reduced parameter nonlinear filter   adapti ve algorithms
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号