首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular relaxation processes in triatomic molecules. II. The N2–CO2 system
Authors:Ronald L Thommarson  George C Berend  Sidney W Benson
Abstract:Translation–vibration (T–V) and vibration–vibration (V–V) energy transfer processes in the N2–CO2 system were investigated using classical trajectory techniques. Two empirical interaction potentials were employed. One is comprised of independent, atom–atom Morse-type functions operating between nonbonded atoms. The other included these atom–atom Morse functions plus Coulombic terms to account for the quadrupole–quadrupole intertion. Both interaction potentials led to similar T–V results. However, the result that CO2(v3) is excited ~103 times more efficiently than N2(v = 1) was obtained, which is at variance with existing analytical theories of T–V energy transfer employing purely repulsive short-range potentials. Different V–V energy transfer probabilities were obtained from the two interaction potentials. The most important finding is that only when electrostatic orientation effects are combined with short-range repulsive interactions is the near-resonant equation image V–V transfer found to be the dominant energy transfer path. This interaction potential also crudely accounts for the negative temperature dependence observed for this near-resonant V–V transfer at low temperatures (300–1000°K).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号