首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrokinetic migration across artificial liquid membranes Tuning the membrane chemistry to different types of drug substances
Authors:Gjelstad Astrid  Rasmussen Knut Einar  Pedersen-Bjergaard Stig
Institution:School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway.
Abstract:Twenty different basic drugs were electrokinetically extracted across a thin artificial organic liquid membrane with a 300 V d.c. electrical potential difference as the driving force. From a 300 microl aqueous sample (acidified corresponding to 10mM HCl), the drugs were extracted for 5 min through a 200 microm artificial liquid membrane of a water immiscible organic solvent immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10mM HCl inside the lumen of the hollow fiber. Hydrophobic basic drugs (logP>1.7) were effectively isolated utilizing 2-nitrophenyl octyl ether (NPOE) as the artificial liquid membrane, with recoveries up to 83%. For more hydrophilic basic drugs (logP<1.0), a mixture of NPOE and 25% (w/w) di-(2-ethylhexyl) phosphate (DEHP) was required to ensure efficient extraction, resulting in recoveries up to 75%. DEHP was expected to act as an ion-pair reagent ion-pairing the protonated hydrophilic drugs at the interface between the sample and the membrane, resulting in permeation of the interface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号