首页 | 本学科首页   官方微博 | 高级检索  
     


A Sequential Tensile Method for Rapid Characterization of Extreme-value Behavior in Microfabricated Materials
Authors:B. L. Boyce
Affiliation:(1) Sandia National Laboratories, P.O. Box 5800, MS0889, Albuquerque, NM 87185-0889, USA
Abstract:A high-throughput sequential tensile test method has been developed to characterize the fracture strength distribution of microfabricated polycrystalline silicon, the primary structural material used in microelectromechanical systems (MEMS). The resulting dataset of over 1,000 microtensile tests reveals subtle extreme-value behavior in the tails of the distribution, demonstrating that the common two-parameter Weibull distribution is inferior to a three-parameter Weibull model. The results suggest the existence of a cut-off or threshold stress (1.446 GPa for this particular material) below which tensile failure will not occur. The existence of a cut-off stress suggests that the material’s flaw size distribution and toughness distribution are both also bounded. From an application perspective, the cut-off stress provides a statistically-sound basis for reliable design. While the sequential method is demonstrated here for tensile strength distributions in polycrystalline silicon MEMS, the technique could be extended to a wide range of mechanical tests (bending strength, elastic modulus, fracture toughness, creep, etc.) for both microsystem and conventional materials.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号