首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0
Authors:Kumar Devesh  Hirao Hajime  de Visser Sam P  Zheng Jingjing  Wang Dongqi  Thiel Walter  Shaik Sason
Institution:Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
Abstract:Density functional theory (DFT) is applied to the dark section of the catalytic cycle of the enzyme cytochrome P450, namely, the formation of the active species, Compound I (Cpd I), from the ferric-hydroperoxide species (Cpd 0) by a protonation-assisted mechanism. The chosen 96-atom model includes the key functionalities deduced from experiment: Asp(251), Thr(252), Glu(366), and the water channels that relay the protons. The DFT model calculations show that (a) Cpd I is not formed spontaneously from Cpd 0 by direct protonation, nor is the process very exothermic. The process is virtually thermoneutral and involves a significant barrier such that formation of Cpd I is not facile on this route. (b) Along the protonation pathway, there exists an intermediate, a protonated Cpd 0, which is a potent oxidant since it is a ferric complex of water oxide. Preliminary quantum mechanical/molecular mechanical calculations confirm that Cpd 0 and Cpd I are of similar energy for the chosen model and that protonated Cpd 0 may exist as an unstable intermediate. The paper also addresses the essential role of Thr(252) as a hydrogen-bond acceptor (in accord with mutation studies of the OH group to OMe).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号