首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pressure-induced formation of diblock copolymer "micelles" in supercritical fluids. A combined study by small angle scattering experiments and mean-field theory. II. Kinetics of the unimer-aggregate transition
Authors:Raudino A  Lo Celso F  Triolo A  Triolo R
Institution:Dipartimento di Chimica, Universita di Catania, Catania, Italy.
Abstract:We developed a simple time-dependent mean-field theory to describe the phase separation kinetics of either homopolymers or AB-diblock copolymers in supercritical (SC) fluids. The model, previously used to describe the phase behavior of AB-block copolymers under the assumption of strong solvent selectivity for just one copolymer chain, has been extended to study the kinetics of the phase separation process. Time resolved small angle x-ray scattering (TR-SAXS) measurements have been performed on different AB-diblock copolymers containing a perfluorinated chain and dissolved in SC-CO2. The data obtained over a wide range of pressure and temperature confirm our theoretical predictions. Particularly interesting is the presence of two relaxation frequencies for the homogeneous solution --> spherical aggregate transition, where the two relaxation processes depend on the depth of the pressure jump and on temperature. The whole phenomenon could be explained as an initial SC solvent/polymer phase separation followed by a slow reorientation process to form spherical aggregates driven by the copolymer solvophilic moiety.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号