首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Infrared chemiluminescence study of CO2 formation in CO + NO reaction on Pd(110) and Pd(111) surfaces
Authors:Nakao Kenji  Ito Shin-ichi  Tomishige Keiichi  Kunimori Kimio
Institution:Institute of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
Abstract:Infrared (IR) chemiluminescence studies of CO2 formed during steady-state CO + NO reaction over Pd(110) and Pd(111) surfaces were carried out. Kinetics of the CO + NO reaction were studied over Pd(110) using a molecular-beam reaction system in the pressure range of 10-2-10-1 Torr. The activity of the CO + NO reaction on Pd(110) was much higher than that of Pd(111), which was quite different from the result of other experiments under a higher pressure range. On the basis of the experimental data on the dependence of the reaction rate on CO and NO pressures and the reaction rate constants obtained by using a reaction model, the coverage of NO, CO, N, and O was calculated under various flux conditions. From the analysis of IR emission spectra in the CO + O2 reaction on Pd(110) and Pd(111), the antisymmetric vibrational temperature (TVAS) was seen to be higher than the bending vibrational temperature (TVB) on Pd(110). In contrast, TVB was higher than TVAS on Pd(111). These behaviors suggest that the activated complex for CO2 formation is more bent on Pd(111) than that on Pd(110), which is reflected by the surface structure. Both TVB and TVAS for the CO + O2 reaction on Pd(110) and Pd(111) increased gradually with increasing surface temperature (TS). On the other hand, in the case of the CO + NO reaction on Pd(110) and Pd(111), TVAS decreased and TVB increased significantly with increasing TS. TVB was lower than TVAS at lower TS, while TVB was higher than TVAS at higher TS. Comparison of the data obtained for the two reactions indicates that TVB in the CO + NO reaction on Pd(110) at TS = 800 and 850 K is much higher than that in the CO + O2 reaction on Pd(110).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号