首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low temperature heat capacity Study of Fe(PO3)3 and Fe2P2O7
Institution:1. Mohammed V University in Rabat, Centre Sciences des Matériaux, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques (LPCMIO), Ecole Normale Supérieure (E.N.S), Rabat, Morocco;2. Chouaib Doukkali University in El Jadida, (E2M LCCA), Faculté des Sciences, El Jadida, Morocco
Abstract:The heat capacities of two iron phosphates, Fe(PO3)3 and Fe2P2O7, have been measured over the temperature range from (2 to 300) K using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). A phase transition related to magnetic ordering has been found in the heat capacity at T = 8.76 K for Fe(PO3)3 and T = 18.96 K for Fe2P2O7, which are comparable with literature values from magnetic measurements. By fitting the experimental heat capacity values, the thermodynamic functions, magnetic heat capacities, and magnetic entropies have been determined. Additionally, theoretical fits at low temperatures suggest that Fe2P2O7 has an anisotropic antiferromagnetic contribution to the heat capacity and a large linear term likely caused by oxygen vacancies. Further data fitting in a series over widened temperature regions found that this linear term exists only below 15 K and disappears gradually from (15 to 17) K.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号