首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance and stability studies of inverted polymer solar cells with TiO2 film as a buffer layer
Authors:Ruixiang Peng  Feng Yang  Xinhua Ouyang  Ying Liu  Yong-Sang Kim  Ziyi Ge
Institution:1. Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
2. Department of Electrical Engineering, Myongji University, Gyeonggi, 449-728, South Korea
Abstract:TiO2 based inverted polymer solar cells (PSCs) with a structure of fluorine-doped tin oxide (FTO)/TiO2/P3HT:PCBM/PEDOT:PSS/Ag presented excellent air stabilities,; the power conversion efficiency (PCE) of devices exhibited only 15 % decay as compared to the highest value while being exposed in air-condition for more than 20 days. Interestingly, an overall enhancement of PCE from 3.5 % to 3.9 % was observed while the PSCs were exposed in air-condition up to 3 days; the improvement of performance was attributed to the TiO2 films’ oxygen and water protection effect and the oxidation of Ag, which will benefit to form an effective work function match with the HOMO of P3HT leading to improved ohmic contact. However, the performance slowly decreased when the exposure time remains longer due to the physical adsorbed oxygen. UV–ozone treatment on the TiO2 films’ leads to the formation of a metal-deficient oxide that results in a decreased PCE for the devices. Finally, X-ray photo-emission spectroscopy (XPS) was used to analyze the compositional changes of the TiO2 films while they were exposed in air-condition or treated by UV–ozone.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号