首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zn2+-catalyzed methanolysis of phosphate triesters: a process for catalytic degradation of the organophosphorus pesticides paraoxon and fenitrothion
Authors:Desloges William  Neverov Alexei A  Brown R S
Institution:Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
Abstract:The methanolyses of two neutral phosphorus triesters, paraoxon (1) and fenitrothion (3), were investigated as a function of added Zn(OTf)(2) or Zn(ClO(4))(2) in methanol at 25 degrees C either alone or in the presence of equimolar concentrations of the ligands phenanthroline (4), 2,9-dimethylphenanthroline (5), and 1,5,9-triazacyclododecane (6). The catalysis requires the presence of methoxide, and when studied as a function of added NaOCH(3), the rate constants (k(obs)) for methanolysis of Zn(2+) alone or in the presence of equimolar 4 or 5 maximize at different (-)OCH(3)]/Zn(2+)](total) ratios of 0.3, 0.5, and 1.0, respectively. Plots of k(obs) vs Zn(2+)](total) either alone or in the presence of equimolar ligands 4 and 5 at the (-)OCH(3)]/Zn(2+)](total) ratios corresponding to the rate maxima are curved and show a nonlinear dependence on Zn(2+)](total). In the cases of 4 and 5, this is explained as resulting from formation of a nonactive dimer, formulated as a bis-mu-methoxide-bridged form (L:Zn(2+)((-)OCH(3))(2)Zn(2+):L) in equilibrium with an active monomeric form (L:Zn(2+)((-)OCH(3))). In the case of the Zn(2+):6 system, no dimeric forms are present as can be judged by the strict linearity of the plots of k(obs) vs Zn(2+)](total) in the presence of equimolar 6 and (-)OCH(3). Analysis of the potentiometric titration curves for Zn(2+) alone and in the presence of the ligands allows calculation of the speciation of the various Zn(2+) forms and shows that the binding to ligands 4 and 6 is very strong, while the binding to ligand 5 is weaker. Overall the best catalytic system is provided by equimolar Zn(2+), 5, and (-)OCH(3), which exhibits excellent turnover of the methanolysis of paraoxon when the substrate is in excess. At a concentration of 2 mM in each of these components, which sets the pH of the solution at 9.5, the acceleration of the methanolysis of paraoxon and fenitrothion relative to the methoxide reaction is 1.8 x 10(6)-fold and 13 x 10(6)-fold, respectively. A mechanism for the catalyzed reactions is proposed which involves a dual role for the metal ion as a Lewis acid and source of nucleophilic Zn(2+)-bound (-)OCH(3).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号